catecholamines are not detectable in the arterial blood, as is demonstrated by the electrophoretogram of a corresponding blood sample taken during the same time interval from the aorta abdominalis (Figure 1d).

Figure 2 demonstrates the content of H³-dopamine and of H³-norepinephrine in different samples of the venous blood from the adrenals as a function of time after H³-tyrosine injection. Between 0 and 30 min the concentration of H³-dopamine and of H³-norepinephrine increases continuously, and is nearly constant between 30 and 45 min. H³-norepinephrine concentration reaches values up to 3⁰/00, H³-dopamine up to 1.8⁰/00 of the total radioactivity. However, in the first sample there is more H³-dopamine than H³-norepinephrine, a fact which is easily understood in view of the precursor nature of dopamine.

Besides its occurrence in the venous blood, H³-dopamine could also be demonstrated in the adrenal gland itself. It

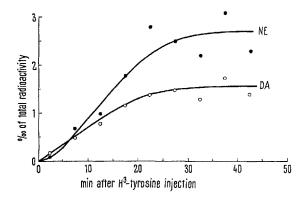


Fig. 2. Concentration of H³-dopamine (DA) and H³-norepinephrine (NE) in the venous blood from the adrenals as a function of time after i.v. H³-tyrosine injection. The total radioactivity of the electrophoretograms was taken as 100%.

represented about 50% of the newly synthesized H³-catecholamines. Contrary to AXELROD et al. ¹⁸, we failed to detect 3-O-methylated catecholamine derivatives in the gland.

Radioactive dopamine was also present in the other organs investigated. The amount of dopamine, expressed as percentage of the total radioactivity of the acid soluble fraction, represents 0.80% in the heart, 0.20% in the spleen, liver and cortex cerebri, 0.17% in the brain stem, and 0.04% in the cerebellum and in the lungs.

The experiments reported here show that dopamine is not only an intermediate in epinephrine biosynthesis in the adrenal gland but also a regular constituent of catecholamines secreted by the adrenal medulla. The biological role of the dopamine secretion cannot be elucidated at this stage. Though dopamine has only little and short lasting pharmacological effect after i.v. administration 14, it must be considered that the fate of secreted dopamine could be influenced by a specific protein binding as suggested recently for catecholamines 18,16.

Zusammenfassung. In Kurzzeitversuchen mit Katzen wurde nach i.v. Injektion von H³-Tyrosin radioaktives Dopamin im venösen Blut der Nebenniere sowie im Organ selbst nachgewiesen.

K. HEMPEL and H. F. K. MÄNNL

Institut für Medizinische Isotopenforschung der Universität, 5 Köln-Lindenthal (Germany), 13th May 1967.

- ¹³ J. AXELROD, S. SENOH and B. WITKOP, J. biol. Chem. 233, 697 (1958).
- ¹⁴ P. Holtz and D. Palm, Ergebn. Physiol. 58, 298 (1966).
- ¹⁵ B. L. Mirkin, D. M. Brown and R. A. Ulstrom, Nature 212, 1270 (1966)
- 16 This investigation was supported by the Deutsche Forschungsgemeinschaft.

Tumour Glucose-6-Phosphate Dehydrogenase Inhibition by Actinomycin

The pentose cycle, an alternative pathway to the Krebs tricarboxylic acid cycle for aerobic breakdown of glucose-6-phosphate, has been considered by some authors to be more important in neoplastic than in normal tissue ¹⁻⁵. The first enzyme participating in this shunt is glucose-6-phosphate dehydrogenase (G-6-PD) ^{6,7}, the activity of which has also been shown by some to be higher in cancer tissues than in their normal counterparts ^{3,8-10}. Indeed, as suggested by Sahasrabudhe⁶, the high rate of synthesis of nucleic acids in tumours could result in the acceleration of this route for pentose phosphate production. Conversely, inhibition of this cycle or one of its steps might conceivably also inhibit tumour proliferation.

Previous studies using a heterotransplanted human adenocarcinoma (H.Ad.) of probable colonic origin growing in the cheek pouch of unconditioned golden hamsters (Mesocricetus auratus), H.Ad. No. 1, showed that tumour-inhibitory doses of actinomycin C resulted in a significant inhibition of tumour G-6-PD activity; corresponding

liver G-6-PD activity remained, however, unaffected ¹¹. In view of the similar chemosensitivity of another heterotransplantable human colonic tumour (GW-39) to H.Ad. No. 1^{12,13}, it was of interest to determine whether this

- ¹ S. ABRAHAM, R. HILL and I. L. CHAIKOFF, Cancer Res. 15, 177 (1955).
- ² S. Kit, Cancer Res. 16, 70 (1956).
- ³ M. VILLAVICENCIO and E. S. G. BARRON, Archs Biochem. Biophys. 67, 121 (1957).
- ⁴ W. S. Beck, J. biol. Chem. 232, 271 (1958).
- ⁵ M. B. Sahasrabudhe, Nature 182, 163 (1958).
- 6 O. WARBURG and H. CHRISTIAN, Biochem. Z. 238, 131 (1931).
- ⁷ O. Warburg and H. Christian, Biochem. Z. 242, 206 (1931).
- ⁸ G. Weber and A. Cantero, Cancer Res. 17, 995 (1957).
- U. Bär, E. Schmidt and F. W. Schmidt, Klin. Wschr. 41, 977 (1963).
- 10 P. Beaconsfield and J. Ginsburg, Lancet 1, 324 (1965).
- ¹¹ D. M. GOLDENBERG, S. WITTE, H. WUST and H. GOLDENBERG, in Antimicrobial Agents and Chemotherapy - 1965 (American Society for Microbiology, 1966), p. 524.
- ¹² D. M. Goldenberg, Arch. Geschwulstforsch. 29, 18 (1967).
- 18 D. M. GOLDENBERG and S. WITTE, Eur. J. Cancer 3, 95 (1967).

G-6-PD inhibition could be demonstrated for this second bowel tumour system.

The methods for transplantation and chemotherapy of GW-39, as well as for spectrophotometric assay of G-6-PD activity, have been described elsewhere 11-13. Table I presents the results of 2 experiments using well tolerated doses of actinomycin C (Sanamycin®, Bayer). Tumour inhibition has been calculated by comparing mean increase in tumour size, based on the first measurement of tumour volume 6-7 days after transplantation, between treated and control groups of tumours on the day of enzyme extraction. All enzyme determinations were performed between 24 and 36 h after the last i.p. injection

Table I. G-6-PD activity of GW-39 tumours after actinomycin C therapy

Daily dose mg/kg	Days treated	No. of tumours assayed	Tumour G-6-PD activity (± S.D.)	Significance* (P) treated vs. controls	Tumour growth inhibition (%)
0.06 controls	7	6 5	37.9 ± 4.6 86.7 ± 12.2	< 0.001	47
0.08 controls	7	5 5	55.9 ± 13.1 89.6 ± 14.4	< 0.005	59

^{*} P according to Student's t test.

Table II. Hamster liver G-6-PD activity after actinomycin C therapy

Daily dose mg/kg	No. of livers assayed	Liver G-6-PD activity (± S.D.)	Significance (P) treated vs. controls
0.06	3	27.5 ± 8.8	0.1
controls	3	39.8 ± 3.1	
0.08	4	57.2 ± 16.4	0.9
controls	4	55.6 ± 7.7	

Micturition Behaviour of Neonatally Testosterone Treated Female Dogs

It is generally accepted that the pattern of activity of the hypothalamus-hypophysis axis can be changed or shifted to the so-called male type – lessened luteinizing hormone secretion and absence of cycles – when testosterone is injected during the first days of life. Female rats so treated are anovulatory and vaginal estrus is maintained.

This paper deals with another type of masculinization, through hetero-sexual change of the nervous centres controlling behaviour: the wellknown adult postural pattern of the dog at micturition. We have already shown (Martins and Valle 2-6) that male dogs when early castrated (28-64 days of age) maintained through life their peculiar infantile attitude at micturition (1P)? How-

of actinomycin. Enzyme activity is expressed in IU/mg total nitrogen. As can be seen, tumour inhibitory doses of actinomycin once more significantly inhibit G-6-PD activity. Liver enzyme levels of the same animals, however, again showed no significant change due to actinomycin therapy (Table II), thus reconfirming the tumour-specificity of this effect.

These results present additional evidence for the correlation between the high anti-tumour activity of actinomycin in such human colonic cancers and tumour G-6-PD inhibition. No cause-and-effect relationship, however, can be postulated at this time. Indeed, a primary effect of actinomycin on DNA-directed synthesis of RNA ^{14,15} might secondarily affect this enzyme, a point which should be clarified by testing other template-inhibiting active and inactive anti-tumour compounds ¹⁶.

Zusammenjassung. Die Aktivität der Glukose-6-phosphat-Dehydrogenase (G-6-PD) wurde in Extrakten des heterotransplantierten Humantumors GW-39 nach cytostatischer Therapie mit Actinomycin C untersucht. Es kam zu einer signifikanten Hemmung der G-6-PD-Aktivität in den Tumoren, während die Enzymaktivität in der Leber der tumortragenden Wirtstiere (Hamster) unbeeinflusst blieb. Diese Ergebnisse entsprechen unseren, an einem histopathologisch ähnlichen Humantumorsystem (H.Ad. No. 1) früher erhobenen Befunden und bestätigen damit den tumorspezifischen Enzymeffekt der Behandlung mit Actinomycin C.

D. M. Goldenberg, S. Witte and W. Ernstberger

Cancer Research Laboratory, Department of Medicine, University Clinics, University of Erlangen-Nürnberg, 852 Erlangen (Germany), 14th June 1967.

ever, they shifted to the adult normal type of lifting one of the hind legs if treated with testosterone propionate (TP). We have also observed that infantile dogs treated with this hormone shifted to the adult male posture (AMP) earlier than the normal male controls. It is interest-

¹⁴ J. HURWITZ, J. J. FURTH, M. MALAMY and M. ALEXANDER, Proc. natn. Acad. Sci. U.S.A. 48, 1222 (1962).

¹⁵ I. H. GOLDBERG, M. RABINOWITZ and E. REICH, Proc. natn. Acad. Sci. U.S.A. 48, 2094 (1962).

¹⁶ This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft.

¹ C. A. Barraclough, Endocrinology 68, 62 (1961).

² Th. Martins and J. R. Valle, Mems Inst. Butantan 16, 237 (1942).

⁸ Th. Martins and J. R. Valle, C. r. Séanc. Soc. Biol. 141, 620 (1947).

⁴ TH. MARTINS and J. R. VALLE, C. r. Séanc. Soc. Biol. 141, 623 (1947).

⁵ TH. MARTINS and J. R. VALLE, J. comp. physiol. Psychol. 41, 301 (1948).

⁶ TH. MARTINS and J. R. VALLE, Abstracts III. Int. pharmac. Congr. (Sao Paulo) 364, 144 (1966).